
Chapter 9: Maximum Flow and the Minimum Cut 

A common question about networks is “what is the maximum flow rate between a given node 
and some other node in the network”?  For example, traffic engineers may want to know the 
maximum flow rate of vehicles from the downtown car park to the freeway on-ramp because this 
will influence their decisions on whether to widen the roadways.  Another example might be the 
maximum number of simultaneous telephone calls between two cities via the various land-lines, 
satellites, and microwave towers operated by a telephone company. 

An infinite flow rate is impossible because the individual roads or telephone links have limited 
capacities to carry flow.  On the other hand, there are usually multiple ways to drive between the 
downtown car park and the freeway on-ramp, or to route calls between two cities.  Finding the 
maximum flow involves looking at all of the possible routes of flow between the two end-points 
in question.  When the system is mapped as network, the arcs represent channels of flow with 
limited capacities.  To find the maximum flow, assign flow to each arc in the network such that 
the total simultaneous flow between the two end-point nodes is as large as possible. 

A further wrinkle is that the flow capacity on an arc might differ according to the direction.  For 
example, a particular road might have two lanes in the A to B direction, but only one lane in the 
B to A direction.  Or it might be simply a one-way street, with no flow in the B to A direction at 
all.  In Figure 9.1, the labels on the arcs indicate the flow capacities in both directions.  For 
example, the label near node A on the arc A-B indicates the flow capacity in the A-to-B 
direction, while the label near node B on the arc A-B indicates the flow capacity in the B-to-A 
direction. 
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Figure 9.1: Find the maximum flow from A to G. 
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Let’s imagine that the flows in Figure 9.1 are in units of vehicles per minute.  Here are some 
examples of routes on which flow could travel from node A to node G: 

• 4 vehicles per minute along the route A-D-E-G. This is the maximum flow on this route 
because of the bottleneck on arc D-E. 

• 3 vehicles per minute along the route A-B-E-G.  The bottleneck here is the arc B-E.  
Note, though, that with the simultaneous flow on route A-D-E-G, the total flow on arc E-
G is now 7 vehicles per minute. 

• 4 vehicles per minute along the route A-C-F-G.  The bottleneck on this route is arc A-C. 

This set of flows gives a total flow of 4 + 3 + 4 = 11 vehicles per minute from A to G.  But it is 
not the maximum flow attainable from A to G.  There remain unused routes for carrying flow 
between the two end nodes.  We need an organized method of tabulating the routes and flows, 
and this is provided by the Ford and Fulkerson method.  As we will see later, the maximum flow 
problem can be solved by linear programming, but the Ford and Fulkerson method is simple and 
even faster than linear programming when implemented on a computer.  Ford and Fulkerson first 
published their method in the Canadian Journal of Mathematics in 1956 – it is real classic paper, 
very often referenced to this day. 

The main idea is careful bookkeeping of the flows assigned to different routes from the origin 
node to the destination node.  The steps in the method are: 

1. Find any path from the origin node to the destination node that has a strictly positive flow 
capacity remaining.  If there are no more such paths, exit. 

2. Determine f, the maximum flow along this path, which will be equal to the smallest flow 
capacity on any arc in the path (the bottleneck arc). 

3. Subtract f from the remaining flow capacity in the forward direction for each arc in the 
path.  Add f to the remaining flow capacity in the backwards direction for each arc in the 
path. 

4. Go to Step 1. 

On termination, the sum of the flows along the paths found during Step 1 gives the maximum 
total flow between the origin and destination nodes. 

Let’s try the Ford and Fulkerson method on the network in Figure 9.1.  The results are shown in 
Figures 9.1 through 9.6.  Figures 9.2 through 9.4 show the three flow paths suggested earlier, and 
Figures 9.5 and 9.6 show two more flow paths that can be added before we are unable to find a 
path that can support a strictly positive flow f.  Note the bookkeeping on the flow capacities as 
the solution progresses, and how it becomes more and more difficult to find a path having 
positive flow capacity. 

The algorithm terminates after the last path is found in Figure 9.6.  No more strictly positive flow 
paths can be found between A and G.  This is obvious since all paths must pass through the set of 
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arcs B-E, D-E, F-E, and F-G, and these arcs have all had their flow capacities in the forward 
direction reduced to zero. 
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Figure 9.2: 4 vehicles per minute along A-D-E-G.
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Figure 9.3: 3 vehicles per minute along A-B-E-G.
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When the algorithm terminates, the maximum total simultaneous flow of vehicles from A to G is 
given by summing the flows on the 5 paths we selected:  4 + 3 + 4 + 2 + 1 = 14 vehicles per 
minute.   

But what is the actual pattern of flows that gives this optimum?  How much flow should go on 
each arc, and in which direction?  This is found by looking at the difference between the initial 
flow capacity and the final flow capacity: a positive difference indicates a flow in the associated 
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Figure 9.5: 2 vehicles per minute along A-D-F-G. 
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Figure 9.4: 4 vehicles per minute along A-C-F-G. 
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direction (a negative difference is ignored).  The pattern of flows – and their directions – which 
gives the maximum simultaneous flow of vehicles per minute, is shown in Figure 9.7.  The arc 
labels in Figure 9.7 show the amount of flow in each arc.  Note that the principle of flow 
conservation at a node is respected.  For example, the flows entering node F total 7 vehicles per 
minute, as do the flows leaving node F. 

You probably noticed that it becomes harder and harder to find a strictly positive flow path as the 
algorithm progresses and all the easy-to-spot paths are used up.  You might think this would be a 
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Figure 9.6: 1 vehicle per minute along A-D-F-E-G. 
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problem in a computer implementation of the method, but it turns out that simple depth-first and 
breadth-first searches are quite efficient for finding positive flow paths. 

Students often ask why the Ford and Fulkerson algorithm bothers to update the flow capacities in 
the backwards directions on the arcs.  This is because the backwards capacities that are added are 
a bookkeeping convention to indicate flow that can be undone if needed.  This did not happen in 
our example, but Figure 9.8 shows a simple example in which the backwards capacities are used 
in reaching a larger total flow.  As you see, after the first path is chosen, the only way for the 
second path to route more flow from A to B is by undoing the flow placed on the vertical arc by 
the first path.  The resulting flow pattern in (d) shows that the vertical arc is not used at all in the 
final solution. 

The maximum flow problem is 
intimately related to the 
minimum cut problem.  A cut is 
any set of directed arcs 
containing at least one arc in 
every path from the origin node 
to the destination node.  In other 
words, if the arcs in the cut are 
removed, then flow from the 
origin to the destination is 
completely cut off.  The cut 
value is the sum of the flow 
capacities in the origin-to-
destination direction over all of 
the arcs in the cut.  The 
minimum cut problem is to find 
the cut that has the minimum cut 
value over all possible cuts in the 
network.  Some possible cuts are 
illustrated in Figure 9.9; each cut 
is labeled with the c
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Figure 9.9: Some possible cuts. 
nd of distributed bottleneck; i.e. a bottleneck for a whole network as opposed to a simple 
eneck for a series of pipes.   

max-flow / min-cut theorem means that we can determine the minimum cut value using the 
 and Fulkerson maximum flow algorithm.  But the real question is where the minimum cut 
cated.  If our traffic engineers determine that the maximum flow rate of vehicles from the car 
 to the freeway on-ramp of 14 vehicles per minute is too small to handle peak rush hour 
ic, then we are going to want to expand the roadways.  But which ones?  There is no point in 
nding roadways that are carrying less than their maximum capacity.  The only roadways to 
nd are those that are part of the bottleneck, i.e. the minimum cut. 
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 for our vehicle flow example are shown in Figure 9.11.  Not 
set of arcs whose flow capacities were forced to zero by the Ford 
forcing the termination: B-E, D-E, F-E, and F-G.  The cut value 
ation) direction is 14 for these arcs, the same as the maximum 
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flow.  These four arcs are the bottleneck for the network.  These are the roads that the traffic 
engineers should consider widening to increase the flow from the car park to the freeway on-
ramp. 

Keep in mind, though, that you may not get one unit of increase in the maximum flow for every 
unit of added capacity in an arc from the minimum cut.  This is because the increased flow 
through that arc may cause another bottleneck to come into play upstream or downstream from 
that arc. 

There are many applications that make use of the minimum cut, including finding the bottlenecks 
in traffic applications as we have shown here, or in telecommunications networks, production 
lines, etc.  It’s interesting to note that the algorithms for finding the max flow and the min cut do 
not require that the associated labels be flow capacities.  Suppose the flow capacity labels 
actually represented costs, e.g. costs of building dams over various tributaries of a river system.  
Then the min cut would actually show the minimum cost of completely damming the water flow 
in the river network.  In a military application during the Vietnam war, the infamous Ho Chi 
Minh trail, actually a network of trails, was modeled as a network, and estimated “costs” were 
assigned to cutting the trail at various points.  The min cut then showed the set of trail segments 
that should be attacked in an attempt to cut the flow of enemy men and supplies at the least 
“cost”. 
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